Кварки что это значит

Кварк

В этой статье не хватает ссылок на источники информации.

Содержание

Кварк — фундаментальная частица в Стандартной модели, обладающая электрическим зарядом, кратным e/3, и не наблюдающаяся в свободном состоянии. Кварки являются точечными частицами вплоть до масштаба примерно 0,5·10 −19 м, что примерно в 20 тысяч раз меньше размера протона. Из кварков состоят адроны, в частности, протон и нейтрон. В настоящее время известно 6 разных «сортов» (чаще говорят — «ароматов») кварков, свойства которых даны в таблице. Кроме того, для калибровочного описания сильного взаимодействия постулируется, что кварки обладают и дополнительной внутренней характеристикой, называемой «цвет». Каждому кварку соответствует антикварк с противоположными квантовыми числами.

Гипотеза о том, что адроны построены из специфических субъединиц, была впервые выдвинута М. Гелл-Манном и, независимо от него, Дж. Цвейгом в 1964 году.

Слово «кварк» было заимствовано Гелл-Манном из романа Дж. Джойса «Поминки по Финнегану», где в одном из эпизодов звучит фраза «Three quarks for Muster Mark!» (обычно переводится как «Три кварка для Мастера/Мюстера Марка!»). Само слово «quark» в этой фразе предположительно является звукоподражанием крику морских птиц. Есть другая версия (выдвинутая Р. Якобсоном), согласно которой Джойс усвоил это слово из немецкого во время своего пребывания в Вене. В немецком слово Quark имеет два значения: 1) творог, 2) чепуха. В немецкий же данное слово попало из западнославянских языков (чеш. tvaroh , польск. twaróg — «творог»). [1]

Читайте также:  Что значит определить разряды числительных по значению

Дж. Цвейг называл их тузами, но данное название не прижилось и забылось — возможно, потому, что тузов четыре, а кварков в первоначальной модели было три.

Свойства кварков

5 МэВ/c²

3 МэВ/c²

Символ Название Заряд Масса
рус. англ.
Первое поколение
d нижний down − 1 /3
u верхний up + 2 /3
Второе поколение
s странный strange − 1 /3 95 ± 25 МэВ/c²
c очарованный charm ( charmed ) + 2 /3 1,8 ГэВ/c²
Третье поколение
b прелестный beauty ( bottom ) − 1 /3 4,5 ГэВ/c²
t истинный truth ( top ) + 2 /3 171 ГэВ/c²

В силу неизвестных пока причин, кварки естественным образом группируются в три так называемые поколения (они так и представлены в таблице). В каждом поколении один кварк обладает зарядом + 2 /3, а другой — − 1 /3. Подразделение на поколения распространяется также и на лептоны.

Кварки участвуют в сильных, слабых и электромагнитных взаимодействиях. Сильные взаимодействия (обмен глюоном) могут изменять цвет кварка, но не меняют его аромат. Слабые взаимодействия, наоборот, не меняют цвет, но могут менять аромат. Необычные свойства сильного взаимодействия приводят к тому, что одиночный кварк не может удалиться на какое-либо существенное расстояние от других кварков, а значит, кварки не могут наблюдаться в свободном виде (явление, получившее название конфайнмент). Разлететься могут лишь «бесцветные» комбинации кварков — адроны.

Реальность кварков

Из-за непривычного свойства сильного взаимодействия — конфайнмента — часто неспециалистами задаётся вопрос: а откуда мы уверены, что кварки существуют, если их никто никогда не увидит в свободном виде? Может, они — лишь математическая абстракция, и протон вовсе не состоит из них?

Причины, по которым кварки считают реально существующими объектами, таковы:

  • Во-первых, в 1960-х годах стало ясно, что все многочисленные адроны подчиняются более-менее простой классификации: сами собой объединяются в мультиплеты и супермультиплеты. Иными словами, при описании всех этих мультиплетов требуется очень небольшое число свободных параметров. То есть, все адроны обладают небольшим числом степеней свободы: все барионы с одинаковым спином обладают тремя степенями свободы, а все мезоны — двумя. Первоначально гипотеза кварков как раз и заключалась в этом наблюдении, и слово «кварк», по сути, было краткой формой фразы «субадронная степень свободы».
  • Далее, при учёте спина оказалось, что каждой такой степени свободы можно приписать спин ½ и, кроме того, каждой паре кварков можно приписать орбитальный момент — словно они и есть частицы, которые могут вращаться друг относительно друга. Из этого предположения возникло стройное объяснение и всему разнообразию спинов адронов, а также их магнитных моментов.
  • Более того, с открытием новых частиц выяснилось, что никаких модификаций теории не требуется: каждый новый адрон удачно вписывался в кварковую конструкцию без каких-либо её перестроек (если не считать добавления новых кварков).
  • Как проверить, что заряд у кварков действительно дробный? Кварковая модель предсказывала, что при аннигиляции высокоэнергетических электрона и позитрона будут рождаться не сами адроны, а сначала пары кварк-антикварк, которые потом уже превращаются в адроны. Результат расчёта течения такого процесса напрямую зависел от того, каков заряд рождённых кварков. Эксперимент полностью подтвердил эти предсказания. [источник не указан 1301 день]
  • С наступлением эры ускорителей высокой энергии стало возможным изучать распределение импульса внутри, например, протона. Выяснилось, что импульс в протоне не распределён равномерно по нему, а частями сосредоточен в отдельных степенях свободы. Эти степени свободы назвали партонами (от англ.part — часть). Более того, оказалось, что партоны, в первом приближении, обладают спином ½ и теми же зарядами, что и кварки. С ростом энергии оказалось, что количество партонов растёт, но такой результат и ожидался в кварковой модели при сверхвысоких энергиях. [2]
  • С повышением энергии ускорителей стало возможным также попытаться выбить отдельный кварк из адрона в высокоэнергетическом столкновении. Кварковая теория давала чёткие предсказания, как должны были выглядеть результаты таких столкновений — в виде струй. Такие струи действительно наблюдались в эксперименте. Заметим, что если бы протон ни из чего не состоял, то струй бы заведомо не было.
  • При высокоэнергетических столкновениях адронов вероятность того, что адроны рассеются на некоторый угол без разрушения, уменьшается с ростом величины угла. Теория предсказывает, что скорость этого уменьшения зависит от числа кварков, из которых состоит адрон. [источник не указан 1301 день] Эксперименты подтвердили, что, например, для протона скорость получается точно такая, какая ожидается для объекта, состоящего из трёх кварков [3] . Аналогичное согласие наблюдается и для других адронов [источник не указан 1301 день] .

В целом, можно сказать, что гипотеза кварков и всё, что из неё вытекает (в частности, КХД), является наиболее консервативной гипотезой относительно строения адронов, которая способна объяснить имеющиеся экспериментальные данные. Попытки обойтись без кварков наталкиваются на трудности с описанием всех тех многочисленных экспериментов, которые очень естественно описывались в кварковой модели.

Открытые вопросы

В отношении кварков остаются вопросы, на которые пока нет ответа:

  • почему ровно три цвета?
  • почему ровно три поколения кварков?
  • случайно ли совпадение числа цветов и числа поколений?
  • случайно ли совпадение этого числа с размерностью пространства в нашем мире?
  • откуда берётся такой разброс в массах кварков?
  • из чего состоят кварки? (см. Преоны)

Впрочем, история с адронами и кварками, а также симметрия между кварками и лептонами, наводит на подозрение, что кварки могут сами состоять из чего-то более простого. Рабочее название для гипотетических частиц-составляющих кварков — преоны. С точки зрения данных экспериментов, до сих пор никаких подозрений на неточечную структуру кварков не возникало. Однако попытки построить такие теории делаются независимо от экспериментов. Серьёзных успехов в этом направлении пока нет.

Другой подход состоит в построении теории Великого объединения. Польза от такой теории была бы не только в объединении сильного и электрослабого взаимодействий, но и в едином описании лептонов и кварков. Несмотря на активные усилия, построить такую теорию также пока не удалось.

Источник

Что такое кварки?

Природа построена по принципу матрешки. Каждый раз открывая каждую последующую матрешку, мы обнаруживаем что-то новое.

Имеются молекулы. Молекулы состоят из атомов. Атомы состоят из электронов и атомного ядра. Ядро состоит из протонов и нейтронов.

Примерно 100 лет назад считалось, что протоны и нейтроны являются элементарными частицами. Потом оказалось, что таких частиц как протоны и нейтроны намного больше. Сначала в космических лучах, а потом и на ускорителях стали открывать все новые и новые частицы. В итоге таких частиц образовалось несколько десятков.

Такое большое количество новых частиц необходимо было проклассифицировать. Чтобы провести правильную классификацию, ученые предположили, что эти частицы состоят из неких других составляющих. То есть было предположено, что протоны, нейтроны и прочие частицы состоят из еще каких-то более мелких частиц.

Этими более мелкими частицами и оказались кварки . Чтобы описать все новые частицы, ученые ввели понятия о верхних , нижних и странных кварках или по-другому u-кварк , d-кварк и s-кварк (от англ. — up, down и strange).

Как строятся частицы из кварков?

Протон и нейтрон состоят из трех кварков. Например протон состоит из двух u-кварков и одного d-кварка. Нейтрон состоит из одного u-кварка и двух d-кварков.

При помощи комбинации трех кварков, будь то uus, dds, uuu и так далее, мы можем получить ту или иную частицу. То есть все то разнообразие частиц, которое было открыто в середине XX века на ускорителях и в космических лучах, можно описать при помощи трех кварков.

Новые кварки

Безусловно за этой идеей стояла мощная математическая конструкция под названием теория групп . Эта теория говорит о том, что все частицы должны образовывать некие семейства. И все те открытые элементарные частицы отлично укладывались в эти семейства при помощи кварков. Также при помощи этой теории получились некоторые незанятые места в семействах, которые впоследствии были заняты в ходе открытия новых частиц.

В 1974 году была открыта частица джей-пси-мезон, которая не вписывалась ни в какое семейство. Поэтому для этой частицы был введен новый очарованный кварк или c-кварк (от англ. charm).

Об этом четвертом кварке говорили и раньше в 1970 году, поскольку теория трех кварков предсказывала распады, которые не происходят в природе, а четное количество кварков как раз исключает эти ненаблюдаемые распады.

В 1977 году в лаборатории Фермилаб был обнаружен пятый b-кварк (от англ. bottom). Наличие пяти известных кварков означало, что должен быть и шестой.

Поиски шестого кварка продолжались почти 20 лет, пока в 1995 году не были обнародованы результаты об обнаружении нового и на данный момент последнего t-кварка (от англ. top).

Классификация кварков

Когда было выяснено, что всего существует 6 кварков, то возникла необходимость проклассифицировать их. Оказалось что кварки группируются парами. Первую пару составляют u- и d-кварки, вторую c- и s-кварк и третью соответственно t- и b-кварк.

Оказалось что каждая пара кварков обладает идентичными свойствами относительно друг друга. Единственное отличие пар заключалось в том, что каждая следующая пара тяжелее предыдущей. Таким образом эти пары кварков были распределены в три семейства или в три поколения частиц.

Источник

Кварк

Из Википедии — свободной энциклопедии


Протон как структура из двух u-кварков и одного d-кварка Состав фундаментальная частица Семья фермион Поколение есть кварки всех 3 поколений [⇨] Участвует во взаимодействиях гравитационное [1] ,
слабое, сильное, электромагнитное Античастица антикварк ( q ) Кол-во типов 6 [2] (нижний, верхний, странный, очарованный, прелестный, истинный) Теоретически обоснована М. Гелл-Манном и, независимо от него, Дж. Цвейгом в 1964 году [3] Обнаружена SLAC (

1968) Квантовые числа Электрический заряд Кратен e/3

  • [⇨] Цветной заряд r, g, b Барионное число
  • 1/3 [4] Спин ½ [5]
  • ħ Медиафайлы на Викискладе

    Кварк — фундаментальная частица в Стандартной модели, обладающая электрическим зарядом, кратным
    e /3, и не наблюдаемая в свободном состоянии, но входящая в состав адронов (сильно взаимодействующих частиц, таких как протоны и нейтроны). Кварки являются бесструктурными, точечными частицами; это проверено вплоть до масштаба примерно 10 −16 см [3] , что примерно в тысячу раз меньше размера протона.

    В настоящее время известно 6 разных «сортов» (чаще говорят — «ароматов») кварков, свойства которых даны в таблице. Кроме того, для калибровочного описания сильного взаимодействия постулируется, что кварки обладают и дополнительной внутренней характеристикой, называемой «цвет». Каждому кварку соответствует антикварк — античастица с противоположными квантовыми числами.

    Гипотеза о том, что адроны построены из специфических субъединиц, была впервые выдвинута М. Гелл-Манном и, независимо от него, Дж. Цвейгом в 1964 году [3] .

    Источник

    Субатомные частицы: квантовое царство

    Внутри атома находится в основном пустое пространство, плотное ядро с величайшей силой, когда-либо известной, и частицы, называемые кварками, которые еще не были замечены. На самом деле, у кварков может быть нулевой размер, в то время как они перемещаются вокруг нейтронов и протонов почти со скоростью света. Электроны также находятся везде, где они могут быть, одновременно. Ну, квантовое царство — странное место.

    Кварки внутри протонов и нейтронов настолько малы, что еще не были обнаружены никаким оборудованием. Самым мощным устройством в этом отношении является европейский ускоритель частиц, называемый Большим адронным коллайдером, который позволяет нам определять размеры объектов размером до 5 * 10 -20 м, то есть размером 1/2000 протона. Все, что меньше этого, может остаться незамеченным, а кварки могут быть меньше.

    Насколько велики кварки?

    Кварк необязательно должен иметь размер 5 * 10 -20 м. Он может даже иметь нулевой размер, но это тоже теория. Если рассматривать эту теорию как реальность, протон может быть размером с баскетбольный мяч, а три кварка — размером с три маленькие песчинки или даже меньше. Кварки движутся вокруг протона или нейтрона почти со скоростью света. Как и атом, протон и нейтрон также состоят из пустого пространства.

    Однако силы, удерживающие кварки вместе, огромны. В отличие от Земли, внутри протона нет ни поля, ни гравитации.

    Силы в квантовом мире

    Вещи в мире субатомных частиц не так легко представить и понять, как вещи, происходящие на Земле. В 1940-х годах американский физик Ричард Фейнман начал исследовать субатомные силы. Он обнаружил, что, скажем, в протоне нет гравитационного поля. Вместо этого частицы толкались, испуская и поглощая частицы.

    Движения и силы внутри атомного ядра нелегко описать с помощью гравитационных полей и законов.

    В протоне или нейтроне есть частица, несущая силу и удерживающую протон вместе. Он действует как клей и поэтому называется глюоном. Глюон — это то, что кварки излучают и поглощают. Следовательно, внутри протона не только движущиеся кварки. Есть также глюоны, прыгающие вперед и назад между кварками, а некоторые глюоны даже взаимодействуют с другими глюонами. Пустое место в протонах, нейтронах и атоме все еще остается. Итак, откуда берется масса?

    Масса и энергия

    Все состоит из атомов, и все имеет массу. Однако атом по сути является пустым пространством. Протоны и нейтроны имеют почти одинаковую массу и в общем называются нуклонами. Масса нуклона примерно в 1836 раз больше массы электрона. Если округлить массу до 2000, электроны можно не учитывать. Масса объекта почти равна к сумме масс нуклонов, создающих этот объект. Но и нуклоны тоже имейте значительное пустое пространство внутри.

    Глюоны безмассовые, поэтому каждый кварк должен иметь массу, равную одной трети нуклона, но это не так. Сумма массы всех кварков в объекте составляет около 2% от общей суммы. Скорость кварков близка к скорости света, то есть они содержат значительную кинетическую энергию. Кварки масштабируются в пространстве 10-15 м в поперечном направлении, и содержание такого быстрого объекта в таком маленьком месте требует огромных усилий, а значит, создает массу потенциальной энергии.

    Относительность в субатомных частицах

    Кварки состоят из 2% массы и 98% потенциальной и кинетической энергии. Уравнение относительности Эйнштейна, то есть E = mc 2 , утверждает, что энергия и масса эквивалентны. Таким образом, 2% массы любого объекта — это масса кварков, а остальные 98% — это исключительно энергия. По сути, все это в основном силовые поля, а не «материал», имеющий массу.

    Около 98% массы всего сущего состоит из экстремальной энергии протонов и нейтронов, а не из массы кварков внутри них.

    В атоме есть нечто большее: виртуальные частицы вещества и антивещества, которые существуют всего лишь мгновение. Они усложняют представление, поскольку появляются повсюду во Вселенной, от глубокого космоса до ядра атомов.

    Окончательным изображением объекта будет, главным образом, энергия, удерживаемая вместе силовыми полями в протонах и нейтронах, ядрах, атомах и молекулах, создающих объект. Это объяснимо в квантовом царстве. Науке предстоит многое сделать, чтобы завершить этот образ и узнать, что на самом деле происходит в любом масштабе окружающего мира или в нас.

    Общие вопросы о субатомных частицах

    Сколько существует субатомных частиц?
    На данный момент открыто 36 подтвержденных элементарных частиц. Они также включают в себя античастицы. Субатомные частицы бывают двух типов: элементарные и составные. Они могут длиться всего несколько секунд и обнаруживаться повсюду во Вселенной, а не только внутри ядра атома.

    Какие силы удерживают вместе субатомные частицы?

    Субатомные частицы удерживаются вместе двумя типами сил: ядерной силой и электромагнитной силой. Это самая мощная сила, известная человечеству. Он должен удерживать частицы, движущиеся со скоростью, близкой к скорости света, в чрезвычайно маленьком пространстве, так что это самая сильная сила, обнаруженная до сих пор.

    Что такое 12 элементарных частиц?

    Существует более 12 субатомных частиц, но 12 основных включают шесть кварков (верхний, нижний, странный, очарованный, красивый и истинный), три электрона (электрон, мюон, тау) и три нейтрино (электрон, мюон, тау).

    Что такое кварк?
    Кварк — это субатомная частица, находящаяся внутри протонов и нейтронов. Они значительно меньше протонов, поэтому внутри протонов и нейтронов остается много пустого места. Кварки имеют 2% массы и 98% энергии, но они создают тяжелую массу нуклонов, согласно теории относительности Эйнштейна.

    Источник

  • Оцените статью